Refinements of the Crystal Structures of $\mathrm{KTcO}_{4}, \mathrm{KReO}_{4}$ and OsO_{4}. The Bond Lengths in Tetrahedral Oxo-Anions and Oxides of \boldsymbol{d}^{0} Transition Metals

By Bernt Krebs and Klaus-Dieter Hasse
Fakultät für Chemie, Universität Bielefeld, Bielefeld, Germany (BRD)

(Received 21 August 1975; accepted 10 October 1975)

Abstract

From single-crystal structure redeterminations of KTcO_{4} (scheelite type, $a=5 \cdot 630, c=12 \cdot 867 \AA$), of KReO_{4} (scheelite type, $a=5 \cdot 674, c=12 \cdot 668 \AA$) and of OsO_{4} (monoclinic, $C 2 / c, a=9 \cdot 379, b=4 \cdot 515, c=$ $8.630 \AA, \beta=116.58^{\circ}$), precise metal-oxygen bond lengths were obtained: Tc-O 1.711 (3), Re-O 1.719 (5), Os-O 1.684 (7) and 1.710 (7) \AA (uncorrected). The Re-O and Os-O values are much more in line with the trend to be expected within the complete series of the isoelectronic MO_{4}^{n-} species (M: d^{0} transition metal) than those previously determined. 'Effective ionic radii' are derived for $\mathrm{Tc}^{\mathrm{VII}}, \mathrm{Re}^{\mathrm{VII}}, \mathrm{Ru}^{\mathrm{VIII}}$ and Os ${ }^{\text {vill }}$.

Introduction

The simple tetrahedral oxo-anions and oxides of the transition metals with d^{0} configuration $\left(\mathrm{VO}_{4}^{3-}, \mathrm{CrO}_{4}^{2-}\right.$, $\left.\mathrm{MoO}_{4}^{2-}, \mathrm{WO}_{4}^{2-}, \mathrm{MnO}_{4}^{-}, \mathrm{TcO}_{4}^{-}, \mathrm{ReO}_{4}^{-}, \mathrm{RuO}_{4}, \mathrm{OsO}_{4}\right)$ are of considerable interest for the understanding of the nature of transition metal-oxygen bonds. In going from the V to the VIII transition metal groups of the periodic table, a continuous decrease of metal-oxygen bond lengths within the isoelectronic series of this class of compounds is to be expected as a result of the contraction of the metal electron shells, together with an increase in bond strength (increasing π bond contributions). The bond-strength increase can be demonstrated most clearly, besides the results of other methods, from the stretching force constants (e.g. Krebs \& Müller, 1967; Müller \& Krebs, 1967; Krebs, Müller \& Fadini, 1967).

Structural and bond-length data which are available for all the species cited above except for TcO_{4}^{-}, show in general the predicted trends. Clarification is, however, needed in the cases of ReO_{4}^{-}and OsO_{4}. For ReO_{4}^{-}the only known structure analysis (of KReO_{4}) reports a $\mathrm{Re}-\mathrm{O}$ bond length of 1.77 (3) \AA (Morrow, 1960) which seems rather long; the Os-O value in solid OsO_{4} [average 1.74 (2) \AA; Ueki, Zalkin \& Templeton, 1965] is at variance with the gas phase electron diffraction result $\left[r_{g}=1.712\right.$ (3) \AA; Seip \& Stølevik, 1966], the significance of this difference being doubtful due to the large error of the X-ray value. Gilli \& Cruickshank (1973) showed that this discrepancy is not caused by neglect of anomalous dispersion in the case of the X-ray data.

To obtain a more reliable base for the discussion of the $\mathrm{Me}-\mathrm{O}$ bonding in this series of compounds, the crystal structures of $\mathrm{KTcO}_{4}, \mathrm{KReO}_{4}$ and OsO_{4} were refined on the basis of counter data.

Experimental

In order to avoid impurities, KTcO_{4} and KReO_{4} were prepared via the volatile oxides. ${ }^{99} \mathrm{Tc}$ (Oak Ridge) and

Re (Degussa) were reacted with O_{2} in a closed system to give $\mathrm{Tc}_{2} \mathrm{O}_{7}$ and $\mathrm{Re}_{2} \mathrm{O}_{7}$. The oxides were sublimed and dissolved in equivalent amounts of aqueous KOH , the salts being crystallized from the solution by slow evaporation. OsO_{4} single crystals were prepared by reaction of Os (Degussa) with O_{2} and subsequent slow sublimation in a closed system which had a provision for cooling during the mounting of the crystals in a sealed capillary. For the X-ray intensity measurements ground spheres of KTcO_{4} (radius $0.048 \mathrm{~mm} ; \mu=42.9$ cm^{-1}) and of KReO_{4} (radius $0.022 \mathrm{~mm} ; \mu=323.2$ cm^{-1}) were used; in the case of OsO_{4} the data were collected on a prismatic crystal with dimensions $0.086 \times 0.066 \times 0.028 \mathrm{~mm}\left(\mu=411.4 \mathrm{~cm}^{-1}\right)$. In all three cases absorption corrections were applied and secondary extinction was corrected for. For $\mathrm{KTCO}_{4}\left(\mathrm{KReO}_{4}\right)$ a full non-equivalent set of 390 (487) reflexions with $\sin \theta / \lambda<0.77(0.82) \AA^{-1}$ was collected on a HilgerWatts four-circle diffractometer at $20^{\circ} \mathrm{C}$ (Zr-filtered Mo $K \alpha$ radiation, $\lambda=0.7107 \AA$, scintillation counter $\omega-2 \theta$ scan), 349 (404) of which were considered to be significant with $I>2 \sigma(I)$. For OsO_{4} data collection was done at $17^{\circ} \mathrm{C}$ on a Philips four-circle diffractometer (graphite monochromator, Mo $K \alpha$ radiation, $\lambda=0.7107 \AA$, scintillation counter, $\omega-2 \theta$ mode), a full set of 488 [444 above $2 \sigma(I)$] reflexions with $\sin \theta / \lambda<$ $0.71 \AA^{-1}$ being measured.

Crystal data and refinement

Unit-cell constants were obtained by least-squares refinement of the four-circle coordinates of 14 reflexions.

Crystal data

KTcO_{4} : tetragonal, $I 4_{1} / a$, scheelite structure as predicted by Boyd (1959) and McDonald \& Tyson (1962), $a=5 \cdot 630$ (2), $c=12 \cdot 867$ (4) $\AA, \quad V=407 \cdot 8 \AA^{3}, \quad Z=4$, $D_{c}=3 \cdot 27, D_{o}=3 \cdot 24(3) \mathrm{g} \mathrm{cm}^{-3}$, all at $20^{\circ} \mathrm{C}$. Previous powder data $[a=5.654, c=13.030 \AA$, McDonald \& Tyson (1962)] are significantly different from these new values.
KReO_{4} : isomorphous with $\mathrm{KTcO}_{4}, 14_{1} / a, a=$
5.674 (2), $c=12.688$ (4) $\AA, V=408.5 \AA^{3}, Z=4, D_{c}=$ $4 \cdot 70, D_{o}=4 \cdot 68(2) \mathrm{g} \mathrm{cm}^{-3}$, all at $20^{\circ} \mathrm{C}$. The cell constants correspond quite well to previous data [$5 \cdot 680$ and $12.703 \AA$, Morrow (1960); 5.660 and $12.667 \AA$, Lock \& Turner (1975)].
OsO_{4} : monoclinic, $C 2 / c, a=9 \cdot 379$ (4), $b=4.515$ (2), $c=8.630$ (3) $\AA, \beta=116.58(4)^{\circ}, \quad V=326.8 \AA^{3}, \quad Z=4$, $D_{c}=5 \cdot 17, D_{o}=5 \cdot 11$ (5) $\mathrm{g} \mathrm{cm}^{-3}$, all at $17^{\circ} \mathrm{C}$. The cell constants are in excellent agreement with those given by Ueki et al. (1965).

The refinement by full-matrix least squares was started for KTcO_{4} and KReO_{4} with the metal atom coordinates taken from the KReO_{4} structure determination by Morrow (1960), for OsO_{4} with the Os coordinates given by Ueki et al. (1965). All oxygen coordinates were taken from subsequent difference Fourier syntheses; the least-squares refinement was then completed with anisotropic temperature factors for all atoms. Scattering curves for Os, Re, Tc, K and O were taken from International Tables for X-ray Crystallography (1968). Anomalous scattering corrections were applied to $\mathrm{Os}, \mathrm{Re}, \mathrm{Tc}$ and K (Cromer \& Liberman, 1970. Introduction of anisotropic temperature factors for the O atoms, which improved the R values about 1%, was shown to be highly justified by Hamilton's (1965) statistical test.

The function minimized was $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ with $w=$ $4 F_{o}^{2} /\left[\sigma\left(F_{o}^{2}\right)\right]^{2} ; \quad \sigma\left(F_{o}^{2}\right)=\left\{[\sigma(I)]^{2}+(0.03 I)^{2}\right\}^{1 / 2} / \mathrm{Lp} ; \quad \mathrm{I}:$ net
intensity. Reflexions with $\sigma(I)>2 I$ were excluded from the refinement $(w=0)$. The final R values after convergence were

$$
\begin{array}{cccc}
& \mathrm{KTcO}_{4} & \mathrm{KReO}_{4} & \mathrm{OsO}_{4} \\
R_{1} & 0.029 & 0.042 & 0.051 \\
R_{2} & 0.034 & 0.041 & 0.046
\end{array}
$$

where $\quad R_{1}=\sum| | F_{o}\left|-\left|F_{c}\right|\right| / \sum\left|F_{o}\right| \quad$ and $\quad R_{2}=\left(\sum w\left(\left|F_{o}\right|-\right.\right.$ $\left.\left.\left|F_{c}\right|\right)^{2} / \sum w F_{o}^{2}\right)^{1 / 2}$ for all measured reflexions, including weak ones. Shifts in the last cycle were below $0 \cdot 04 \sigma$; the highest maxima in the difference syntheses (in the vicinity of the heavy metals) were below 1.2 e $\AA^{-3 .}$.

The final atomic coordinates and thermal parameters are given in Table 1. Table 2 lists the interatomic distances and bond angles within the $\mathrm{TcO}_{4}^{-}, \mathrm{ReO}_{4}^{-}$and OsO_{4} tetrahedra. \dagger The transition metal-oxygen bond distances were corrected for Jibrational oscillations of the tetrahedra (Cruickshank, 1956; Schomaker \& Trueblood, 1968); the corrected distances are given in Table 2.

* The programs used for the calculations on a PDP10 included local versions of the DATAP (M. Dobler), ORFLS (W. R. Busing, K. O. Martin, H. A. Levy) and FORDAP (A. Zalkin) programs.
\dagger Lists of the observed and calculated structure factors have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 31445 (7 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CHI 1 NZ , England.

Table 1. Atomic coordinates and anisotropic temperature factor coefficients (U values multiplied by 10^{4})
The temperature factors are expressed in the form

$$
\begin{gathered}
\exp \left[-2 \pi^{2}\left(U_{11} h^{2} a^{* 2}+U_{22} k^{2} b^{* 2}+U_{33} l^{2} c^{* 2}+2 U_{12} h k a^{*} b^{*}+2 U_{13} h l a^{*} c^{*}+2 U_{23} k l b^{*} c^{*}\right)\right] . \\
\text { E.s.d.'s are given in parentheses in units of the last decimal. Origins at } T .
\end{gathered}
$$

(a) KTcO_{4}
(b) KReO_{4}
(c) OsO_{4}

		x			y	z	
	Tc	4(a)	0		0.25	$0 \cdot 125$	
	K	4(b)	0		0.25	0.625	
	0	16(f)	$0 \cdot 1089$ (4)		0.0254 (4)	$0 \cdot 2008$ (2)	
	U_{11}		U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Tc	207 (2)		207 (2)	226 (2)	0	0	0
K	290 (4)		290 (4)	249 (5)	0	0	0
0	295 (10)		304 (10)	317 (10)	54 (9)	2 (8)	69 (8)
		x			y	z	
	Re	4(a)	0		0.25	$0 \cdot 125$	
	K	4(b)	0		0.25	$\begin{aligned} & 0.625 \\ & 0.2027 \text { (5) } \end{aligned}$	
	0	16(f)	$0 \cdot 1166$ (10)		$0 \cdot 0310$ (9)		
	U_{11}		U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Re	138 (1)		138 (1)	164 (1)	0	0	0
K	313 (8)		313 (8)	281 (11)	0	0	0
O	300 (26)		206 (22)	252 (20)	-7 (18)	-14 (19)	75 (17)
			x		y	z	
	Os	4(e)	0		$0 \cdot 25940$ (8)	$0 \cdot 25$	
	O(1)	8(f)	$0 \cdot 1125$ (8)		0.0366 (17)	$0 \cdot 1927$ (12)0.4190 (9)	
	$\mathrm{O}(2)$	8(f)			0.4832 (21)		
	U_{11}		U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Os	263 (2)		221 (2)	210 (2)	0	128 (2)	0
O(1)	427 (32)		533 (38)	542 (44)	-73(33)	269 (35)	-11(44)
$\mathrm{O}(2)$	425 (32)		664 (43)	188 (25)	-40 (38)	-30 (23)	-110 (29)

Table 2. Interatomic distances and bond angles with standard deviations

KTcO_{4}		Corrected	Multiplicity
$\mathrm{Tc}-\mathrm{O}$	1.711 (3) \AA	$1.724 \AA$	4
$\mathrm{O}-\mathrm{Tc}-\mathrm{O}^{1}$	110.5 (2) ${ }^{\circ}$		2
$\mathrm{O}-\mathrm{Tc}-\mathrm{O}^{\text {II }}$	109.0 (2)		4
$\mathrm{O} \cdots \mathrm{O}^{1}$	2.811 (4) \AA		1
$\mathrm{O} \cdots \mathrm{O}^{\text {II }}$	2.785 (4)		2
$\mathrm{K}-\mathrm{O}^{\text {III }}$	2.794 (3)		4
$\mathrm{K}-\mathrm{O}^{\text {IV }}$	$2 \cdot 864$ (3)		
KReO_{4}			
$\mathrm{Re}-\mathrm{O}$	1.719 (5) \AA	$1.733 \AA$	4
$\mathrm{O}-\mathrm{Re}-\mathrm{O}^{1}$	110.0 (3) ${ }^{\circ}$		2
$\mathrm{O}-\mathrm{Re}-\mathrm{O}^{\text {II }}$	$109 \cdot 2$ (3)		4
$\mathrm{O} \cdots \mathrm{O}^{\text {I }}$	2.816 (10) \AA		1
$\mathrm{O} \cdots \mathrm{O}^{\text {II }}$	2.802 (10)		2
$\mathrm{K}-\mathrm{O}^{\text {III }}$	2.785 (6)		4
$\mathrm{K}-\mathrm{O}^{\text {IV }}$	$2 \cdot 872$ (6)		4
OsO_{4}			
Os $\cdots \cdots \mathrm{O}(1)$	1.684 (7) \AA	1.698 Å	2
$\mathrm{Os} \cdots \cdots \mathrm{O}(2)$	1.710 (7)	1.727	2
$\mathrm{O}(1)-\mathrm{Os}-\mathrm{O}(1)^{\mathbf{v}}$	106.7 (4) ${ }^{\circ}$		1
$\mathrm{O}(1)-\mathrm{Os}-\mathrm{O}(2)$	$110 \cdot 7$ (3)		2
$\mathrm{O}(1)-\mathrm{Os}-\mathrm{O}(2)^{\mathrm{v}}$	$110 \cdot 6$ (3)		2
$\mathrm{O}(2)-\mathrm{Os}-\mathrm{O}(2)^{\mathbf{v}}$	$107 \cdot 6$ (4)		1
$\mathrm{O}(1) \cdots \mathrm{O}(1)^{\mathbf{v}}$	2.702 (14) \AA A		1
$\mathrm{O}(1) \cdots \mathrm{O}(2)$	2.793 (11)		2
$\mathrm{O}(1) \cdots \mathrm{O}(2)^{\mathrm{v}}$	2.791 (11)		2
$\mathrm{O}(2) \cdots \mathrm{O}(2)^{\text {v }}$	2.760 (14)		1

The indices refer to the following transformations of the parameters in Table 1: (I) $\bar{x}, \frac{1}{2}-y, z$; (II) $-\frac{1}{4}+y, \frac{1}{4}-x, \frac{1}{4}-z$; (III) $\frac{1}{4}+y, \frac{1}{4}-x, \frac{1}{4}+z$; (IV) $\frac{1}{2}-x, \bar{y}, \frac{1}{2}+z$; (V) $\tilde{x}, y, \frac{1}{2}-z$.

Discussion

The $\mathrm{Tc}-\mathrm{O}$ and $\mathrm{Re}-\mathrm{O}$ bond lengths in the slightly but significantly distorted TcO_{4}^{-}and ReO_{4}^{-}tetrahedra in KTcO_{4} and KReO_{4} are equal within the limits of error. This effect of the 'lanthanide contraction' is similarly observed in bonds of the homologous pairs $\mathrm{Hf}-\mathrm{Zr}$, $\mathrm{Nb}-\mathrm{Ta}$ and $\mathrm{Mo}-\mathrm{W}$ to other elements.

The Tc-O bond length of 1.711 (3) \AA^{*} is comparable to the mean value $[1.714 \AA$; single values 1.649 (6)... 1.840 (1) \AA] within the distorted TcO_{4} tetrahedra of the dimeric $\mathrm{Tc}_{2} \mathrm{O}_{7}$ molecules in the solid (Krebs, 1971).

The present result for the $\operatorname{Re-O}$ bond $[1.719$ (5) $\AA]$ shows the previously reported value $[1.77$ (3) \AA; Mor-

* For the purpose of comparison with other (mostly uncorrected) bond distances the uncorrected values are used.

Fig. 1. Metal-oxygen bond lengths in tetrahedral d^{0} transition metal oxo-anions and oxides in relation to the group numbers of the metals.

Table 3. Structural and bonding data for tetrahedral d^{0} transition-metal oxo-anions and oxides

	Experimental M-O bond lengths $(\AA$)	Method	Mean value (\AA	$\begin{aligned} & \text { 'Effective ionic } \\ & \text { radius' } \AA \\ & \text { of } M(\AA) \end{aligned}$	$\mathrm{M}-\mathrm{O}$ stretching ${ }^{b}$ force constant (mdyn \AA^{-1})
VO_{4}^{3-}	c	X	1.71	$0 \cdot 355$	$4 \cdot 80$
CrO_{4}^{2-}	c	X	$1 \cdot 65$	$0 \cdot 30$	$5 \cdot 65$
MoO_{4}^{2-}	c	X	1.77	$0 \cdot 42$	5.93
WO_{4}^{2-}	c	X	$1 \cdot 78^{\text {d }}$	$0 \cdot 42$	$6 \cdot 48$
MnO_{4}^{-}	$1 \cdot 607(5)^{e}$	X	$1 \cdot 61$	$0 \cdot 26$	$5 \cdot 93$
	$1 \cdot 610$ (4) ${ }^{\text {f }}$	X			
TcO_{4}^{-}	1.711 (3) ${ }^{\text {g }}$	X	1.71	0.35^{9}	6.78
ReO_{4}^{4}	$1.719(5)^{\text {g }}$	X	1.72	$0 \cdot 36^{9}$	$7 \cdot 56$
	$1 \cdot 723$ (4) ${ }^{h}$	X			
RuO_{4}	1.706 (3) ${ }^{\text {d }}$	e.d.	1.70	0.35^{9}	6.96
OsO_{4}	1.712 (3) ${ }^{\text {d }}$	e.d.	1.71	$0 \cdot 36^{9}$	$8 \cdot 29$

Notes: (a) According to Shannon \& Prewitt (1969); for CN 4, d^{0} configuration, based on $r\left({ }^{(\mathrm{vV}} \mathrm{O}^{2-}\right)=1 \cdot 40 \AA$. (b) Müller \& Diemann (1974). (c) Several X-ray structure determinations exist for these ions. A list of references is given, e.g. by Shannon \& Prewitt (1969, 1970). Compilations of VO_{4}^{3-} data: Brown \& Shannon (1973), of MoO_{4}^{2-} data: $\mathrm{Schröder}$ (1975). $\mathrm{TiO}_{4}^{4-}, \mathrm{NbO}_{4}^{3-}$ and TaO_{4}^{3-} (Barker \& Wood, 1972) may be added to this group of compounds, if more reliable structural data are available. (d) Contrary to Shannon \& Prewitt (1970) who assign equal radii to $\mathrm{Mo}^{\mathrm{VI}}$ and W^{VI}, the difference of about $0.01 \AA$ seems significant from the large number of literature data. (e) Palenik (1967): KMnO_{4}. (f) Boonstra (1968): AgMnO_{4}. (g) This paper. (h) Lock \& Turner (1975): KReO_{4}. (i) Schäfer \& Seip (1967). (j) Seip \& Stølevik (1966).
row (1960)], which was accepted as the normal $\mathrm{Re}^{\mathrm{VII}}-\mathrm{O}$ bond length, to be considerably too high. This is in good agreement with a recent independent refinement of the KReO_{4} structure $[\mathrm{Re}-\mathrm{O} 1.723$ (4) \AA; Lock \& Turner (1975)] and confirms the X-ray results for the ReO_{4} tetrahedra in the polymeric $\mathrm{Re}_{2} \mathrm{O}_{7}$ structure [average $\mathrm{Re}-\mathrm{O} 1.74 \AA$; single values 1.68 (3) $\cdots 1.80$ (2) \AA; Krebs, Müller \& Beyer (1969)], for the tetrahedral $\mathrm{ReO}_{3} \mathrm{~S}^{-}$ions in $\mathrm{RbReO}_{3} \mathrm{~S}$ [av. $\mathrm{Re}-\mathrm{O} 1.730 \AA$, single values 1.717 (15) $\cdots 1.745$ (13) \AA; Krebs \& Kindler (1969)], and is close to the values for $\mathrm{ReO}_{3} \mathrm{Cl}[\mathrm{Re}-\mathrm{O}$ 1.702 (3) \AA] and for $\mathrm{ReO}_{3} \mathrm{~F}[\mathrm{Re}-\mathrm{O} 1.692$ (3) $\AA]$ from microwave spectra (Amble, Miller, Schawlow \& Townes, 1952; Lotspeich, Javan \& Engelbrecht, 1959).
The details of the remaining structural features are very similar in KTcO_{4} and KReO_{4}. Besides the almost identical K-O distances (Table 2), nonbonded O...O contact distances in the tristetrahedral KO_{8} polyhedra of $\mathrm{KTcO}_{4}\left(\mathrm{KReO}_{4}\right)$ are: $3.087(3 \cdot 080)$, $3 \cdot 413$ (3.357), 3.335 (3.452), 3.707 (3.728) \AA, with additiond interionic contacts at $3 \cdot 244(3 \cdot 148) \AA$. Every O has one $\mathrm{Tc}(\mathrm{Re})+$ two K as neighbours.
The mean Os-O bond length of $1.697 \AA$ found in the present study agrees better with the gas phase electron diffraction results $\left[r_{g}=1.712\right.$ (3) \AA; Seip \& Stølevik (1966)] than the less precise previous X-ray value of $1.74 \AA$ [single values 1.76 (3) and 1.71 (3) \AA; Zalkin \& Templeton (1965)] and fits better into the isoelectronic series of analogous tetrahedra. The OsO_{4} tetrahedra show significant angular distortion, apparently caused by intermolecular packing forces.

The intermolecular $\mathrm{O} \cdots \mathrm{O}$ contacts in the OsO_{4} structure are at $3.055,3.073,3.095,3.101,3.157$, $3 \cdot 159,3 \cdot 171,3 \cdot 223,3 \cdot 233,3 \cdot 288,3 \cdot 346 \AA$, indicating quite regular packing $[\sigma(\mathrm{O} \cdots \mathrm{O}): 0 \cdot 012 \cdots 0 \cdot 015 \AA]$.
With the reservations that should be made in directly comparing X-ray diffraction results with gas phase electron diffraction data, Table 3 gives the bond-length data for the complete series of stable tetrahedral d^{0} transition metal oxo-anions and oxides. In Fig. 1 the correlation between bond lengths and oxidation numbers (group numbers of the metals) is shown. The continuous decrease of the $\mathrm{M}-\mathrm{O}$ values within the isoelectronic series from left to right is partly due to the normal increase of nuclear charge-electron shell attraction in the metals and partly to the increase in π bond strength (parallel to a decrease of negative ionic charge) in the strongly covalent bonds. This is shown from the $\mathrm{Me}-\mathrm{O}$ stretching force constants cited in Table 3. From the $\mathrm{Tc}-\mathrm{O}, \mathrm{Re}-\mathrm{O}$ and $\mathrm{Os}-\mathrm{O}$ bond lengths in $\mathrm{KTcO}_{4}, \mathrm{KReO}_{4}$ and OsO_{4} the 'effective ionic radii' in the definition of Shannon \& Prewitt (1969) can be derived for $\mathrm{Tc}^{\mathrm{VII}}, \mathrm{Re}^{\mathrm{VII}}$ and $\mathrm{Os}^{\text {vIII }}$ with CN 4 (tetrahedral). Subtraction of $r\left({ }^{\text {(II }} \mathrm{O}^{2-}\right)=1.36 \AA$ from the $\mathrm{Tc}-\mathrm{O}$ and $\mathrm{Re}-\mathrm{O}$ bond lengths observed results in the values $0.35 \AA$ for $\mathrm{Tc}^{\mathrm{VII}}$ and $0.36 \AA$ for $\mathrm{Re}^{\mathrm{VII}}$, as given in Table 3. A value for $r\left({ }^{1} \mathrm{O}^{2-}\right)$, which has to be formally used in the calculation of the corresponding effective radius for $\mathrm{Os}^{\text {vIII }}$, is not known. From the data derived
by Shannon \& Prewitt, it should not be significantly different from the value for CN $2(1.35 \AA)$. Subtracting this value from the observed bond lengths results in the effective ionic radius of $0.36 \AA$ for $\mathrm{Os}^{\text {vill }}$ with CN 4 and (if the gas phase bond length is assumed to be valid also for the solid) of $0.35 \AA$ for $\mathrm{Ru}^{\text {viII }}$; see Table 3.

We thank Professor H. Müller-Buschbaum and Professor W. Preetz for making available to us the facilities of the Institute of Inorganic Chemistry, University of Kiel, where part of this work wasdone. Financial support by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie is gratefully acknowledged.

References

Amble, E., Miller, S. L., Schawlow, A. L. \& Townes, C. H. (1952). J. Chem. Phys. 20, 192-193.

Barker, M. G. \& Wood, D. J. (1972). J. Chem. Soc. Dalton, pp. 9-13, 2448-2450.
Boonstra, E. G. (1968). Acta Cryst. B24, 1053-1062.
Boyd, G. E. (1959). J. Chem. Educ. 36, 3-14.
Brown, I. D. \& Shannon, R. D. (1973). Acta Cryst. A29, 266-282.
Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
Cruickshank, D. W. J. (1956). Acta Cryst. 9, 754-756, 757-758.
Gilli, G. \& Cruickshank, D. W. J. (1973). Acta Cryst. B29, 1983-1985.
Hamilton, W. C. (1965). Acta Cryst. 18, 502-510.
International Tables for X-ray Crystallography (1968). Vol. III. Birmingham: Kynoch Press.

KREBS, B. (1971). Z. anorg. allgem. Chem. 380, 146-159.
Krebs, B. \& KINDLER, E. (1969). Z. anorg. allgem. Chem. 368, 293-307.
Krebs, B. \& Müller, A. (1967). J. Mol. Spectrosc. 22, 290295.

Krebs, B., Müller, A. \& Beyer, H. (1969). Inorg. Chem. 8, 436-443.
Krebs, B., Müller, A. \& Fadini, A. (1967). J. Mol. Spectrosc. 24, 198-203.
Lock, C. J. L. \& Turner, G. (1975). Acta Cryst. B31, 1764-1765.
Lotspeich, J. F., Javan, A. \& Engelbrecht, A. (1959). J. Chem. Phys. 31, 633-643.
McDonald, B. J. \& Tyson, G. J. (1962). Acta Cryst. 15, 87. Morrow, J. C. (1960). Acta Cryst. 13, 443-445.
Müller, A. \& Diemann, E. (1974). MTP Int. Rev. Sci., Inorg. Chem. Ser. II, 5, 71-110. London: Butterworth.
Müller, A. \& Krebs, B. (1967). J. Mol. Spectrosc. 24, 180-197.
Palenik, G. J. (1967). Inorg. Chem. 6, 503-507.
Schäfer, L. \&SeIp, H. (1967).Acta Chem. Scand. 21,737-744.
Schomaker, V. \& Trueblood, K. N. (1968). Acta Cryst. B24, 63-76.
SChröder, F. (1975). Acta Cryst. B31, 2294-2309.
Selp, H. M. \& Stølevik, R. (1966). Acta Chem. Scand. 20, 385-394.
Shannon, R. D. \& Prewitt, C. T. (1969). Acta Cryst. B25, 925-946.
Shannon, R. D. \& Prewitt, C. T. (1970). Acta Cryst. B26, 1046-1048.
Ueki, T., Zalkin, A. \& Templeton, D. H. (1965). Acta Cryst. 19, 157-160.

